Regulation of hard a-keratin mechanics via control of intermediate filament hydration: matrix squeeze revisited

نویسندگان

  • Douglas S. Fudge
  • Daniel A. Greenberg
چکیده

Mammalian hard a-keratins are fibre-reinforced biomaterials that consist of 10 nm intermediate filaments (IFs) embedded in an elastomeric protein matrix. Recent work suggests that the mechanical properties of IFs are highly sensitive to hydration, whereas hard a-keratins such as wool, hair and nail are relatively hydration insensitive. This raises the question of how mammalian keratins remain stiff in water. The matrix squeeze hypothesis states that the IFs in hard a-keratins are stiffened during an air-drying step during keratinization, and subsequently locked into a dehydrated state via the oxidation and cross-linking of the keratin matrix around them. The result is that even when hard a-keratins are immersed in water, their constituent IFs remain essentially ‘dry’ and therefore stiff. This hypothesis makes several predictions about the effects of matrix abundance and function on hard a-keratin mechanics and swelling behaviour. Specifically, it predicts that high matrix keratins in water will swell less, and have a higher tensile modulus, a higher yield stress and a lower dry-to-wet modulus ratio. It also predicts that disruption of the keratin matrix in water should lead to additional swelling, and a drop in modulus and yield stress. Our results are consistent with these predictions and suggest that the keratin matrix plays a critical role in governing the mechanical properties of mammalian keratins via control of IF hydration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of hard α-keratin mechanics via control of intermediate filament hydration: matrix squeeze revisited.

Mammalian hard α-keratins are fibre-reinforced biomaterials that consist of 10 nm intermediate filaments (IFs) embedded in an elastomeric protein matrix. Recent work suggests that the mechanical properties of IFs are highly sensitive to hydration, whereas hard α-keratins such as wool, hair and nail are relatively hydration insensitive. This raises the question of how mammalian keratins remain s...

متن کامل

Molecular design of the alpha-keratin composite: insights from a matrix-free model, hagfish slime threads.

We performed mechanical tests on a matrix-free keratin model-hagfish slime threads-to test the hypothesis that intermediate filaments (IFs) in hydrated hard alpha-keratins are maintained in a partly dehydrated state. This hypothesis predicts that dry IFs should possess mechanical properties similar to the properties of hydrated hard alpha-keratins, and should swell more than hard alpha-keratins...

متن کامل

Isolation of intermediate filament assemblies from human hair follicles

We used developing human hair follicle cells for the isolation of hard alpha-keratin structural components. Intracellular dispersions examined by electron microscopy contained both individual alpha-keratin filaments and the tactoid-like filament assemblies observed in situ organized along subfibrillar arms of macrofibrils. The assemblies of average width 47 nm were composed of closely packed al...

متن کامل

Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation

Lysine acetylation is an important posttranslational modification that regulates microtubules and microfilaments, but its effects on intermediate filament proteins (IFs) are unknown. We investigated the regulation of keratin 8 (K8), a type II simple epithelial IF, by lysine acetylation. K8 was basally acetylated and the highly conserved Lys-207 was a major acetylation site. K8 acetylation regul...

متن کامل

Simulating the formation of keratin filament networks by a piecewise-deterministic Markov process.

Keratin intermediate filament networks are part of the cytoskeleton in epithelial cells. They were found to regulate viscoelastic properties and motility of cancer cells. Due to unique biochemical properties of keratin polymers, the knowledge of the mechanisms controlling keratin network formation is incomplete. A combination of deterministic and stochastic modeling techniques can be a valuable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012